
参考文献
[13] Xu W, Gao F, Jin S, et al. 3D scene-based beam selection for mmWave communications[J]. IEEE
Wireless Communications Letters, 2020, 9(11):1850–1854.
[14] Giordani M, Polese M, Roy A, et al. A tutorial on beam management for 3GPP NR at mmWave fre-
quencies[J]. IEEE Communications Surveys & Tutorials, 2018, 21(1):173–196.
[15] Heng Y, Andrews J G, Mo J, et al. Six key challenges for beam management in 5.5 G and 6G systems[J].
IEEE Communications Magazine, 2021, 59(7):74–79.
[16] Li X, Alkhateeb A. Deep learning for direct hybrid precoding in millimeter wave massive MIMO
systems[C]. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove,
USA. 2019. 800–805.
[17] Boumal N, Mishra B, Absil P A, et al. Manopt, a Matlab toolbox for optimization on manifolds[J]. The
Journal of Machine Learning Research, 2014, 15(1):1455–1459.
[18] Townsend J, Koep N, Weichwald S. Pymanopt: A Python Toolbox for Optimization on Manifolds using
Automatic Differentiation[J]. Journal of Machine Learning Research, 2016, 17(137):1–5.
[19] Lezcano-Casado M. Trivializations for gradient-based optimization on manifolds[C]. In: Advances in
Neural Information Processing Systems. Vancouver Canada. 2019. 32:9154–9164.
[20] Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library[C]. In: Advances in Neural Information Processing Systems. Vancouver Canada. 2019. 32.
[21] Ng A, et al. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011):1–19.
[22] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift[C]. In: International conference on machine learning. Lille, France. 2015. 37:448–456.
[23] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation
of feature detectors[J]. arXiv preprint arXiv:1207.0580, 2012.
[24] Agarap A F. Deep learning using rectified linear units (relu)[J]. arXiv preprint arXiv:1803.08375, 2018.
[25] Alkhateeb A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO
applications[J]. arXiv preprint arXiv:1902.06435, 2019.
[26] Medeđović P, Veletić M, Blagojević Ž. Wireless insite software verification via analysis and comparison
of simulation and measurement results[C]. In: 2012 Proceedings of the 35th International Convention
MIPRO. Opatija, Croatia. 2012. 776–781.
[27] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980,
2014.
[28] Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts[J]. arXiv preprint
arXiv:1608.03983, 2016.
[29] Qi C, Wang Y, Li G Y. Deep Learning for Beam Training in Millimeter Wave Massive MIMO Systems[J].
IEEE Transactions on Wireless Communications, 2020, early access.
24